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Abstract—The integration of uncertain power resources is
causing more challenges for traditional load modeling research.
Parameters identification of load modeling is impacted by a
variety of load components with time-varying characteristics.
This paper develops a deep learning based time-varying param-
eter identification (TVPI) model for composite load modeling
(CLM) with ZIP load and induction motor (IM). A multi-
modal long short-term memory (M-LSTM) deep learning method
is used to estimate all the time-varying parameters of CLM
considering system-wide measurements. It contains a multi-
modal structure that makes use of different modalities of the
input data to accurately estimate time-varying load parameters.
An LSTM network with flexible number of temporal states is
defined to capture powerful temporal patterns from the load
parameters and measurements time series. The extracted features
are further fed to a shared representation layer to capture the
joint representation of input time series data. This temporal
representation is used in a linear regression model to estimate
time-varying load parameters at the current time. Numerical
simulations on the 23- and 68-bus systems verify the effectiveness
and robustness of the proposed M-LSTM method. Also, the
optimal lag values of parameters and measurements as input
variables are solved.

Index Terms—Composite load model, deep learning, long
short-term memory, parameter identification.

NOMENCLATURE

A. Parameter and State Variables:
aP,t, bP,t, cP,t Percentages for ZIP active power at t.
aQ,t, bQ,t, cQ,t Percentages for ZIP reactive power at t.
id,t, iq,t d- and q-axis stator current at t.
PIM,t Active power of induction motor at t.
PZIP,0 Base active power of ZIP load.
PZIP,t Active power of ZIP load at t.
Pt, Qt Measured active and reactive power at t.
QIM,t Reactive power of induction motor at t.
QZIP,0 Base reactive power of ZIP load.
QZIP,t Reactive power of ZIP load at t.
rR,t, rS,t Rotor and stator resistance at t.
st Rotor slip at t.
ud,t, uq,t d- and q-axis bus voltage at t.
V0, Vt Nominal and measured voltage magnitude at t.
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v′d,t, v
′
q,t d- and q-axis transient voltage at t.

xm,t, x
′
t Magnetizing and short circuit reactance at t.

xR,t, xS,t Rotor and stator reactance at t.
Ht Inertia constant of induction motor at t.
dξ, dM Dimensions of parameters and measurements.
εξM , εξξ Estimation error/noise.
kξ, kM Lag values considered for the time series of

parameter and measurement variables.
N Total number of load buses in the system.
C(i) Updated state of the memory cell at round i.
C̃ (i) Temporal updated state of the memory cell at

round i.

B. Sets, Vectors, Matrices, and Functions:

ξtdξ ,M
t
dM Time-varying parameter variables and measure-

ment variables at time t.
ξ̂
t

dξ
Estimations of parameter variables at time t.

M i,t
dξ

Measurement vector at time t on load bus i.
ξdξ×kξ Parameter variables with the lag kξ.
MdM×(kM+1) Measurement variables with the lag kM .
f ξM Nonlinear function between parameter and mea-

surement variables.
F ξM Nonlinear function between parameter and mea-

surement variables for one targeted bus.
FM Nonlinear function between measurements on

the targeted bus and other system-wide buses.
FξM Nonlinear function between time-varying param-

eters and measurements on system-wide load
buses.

hξ (i),hM (i) Latent variable vector obtained from the LSTM
at the ith round of network update.

utξ, u
t
M Average of temporal latent variables at time t.

I(i),f(i),o(i) Vectors of the input, forget, and output gates.
T (·) Nonlinear sigmoidal activation function.
T̃ (·) Hyperbolic tangent function.
T̂ (·) Nonlinear tangent hyperbolic activation for map-

ping the memory content to the latent space.
J Tunable weight matrices and J =

{Wi,Wf ,Wo, Ui, Uf , Uo}.
B Bias vectors and B = {bi, bf , bo}.
S Tunable parameters of the memory cell and S =

{Wc, Uc, bc}.
ϕ Total parameters of M-LSTM.
g(·) Linear regression model.
E(·) Supervised loss function.
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I. INTRODUCTION

ACCURATE time-varying load modeling is becoming
more and more important due to the increasing integra-

tion of uncertain power resources. The common load mod-
eling structures consist of static model, dynamic model, and
composite model. The composite load modeling (CLM) with
specific parameters has been widely used since it considers
both the static and the dynamic characteristics of static model
and dynamic model [1], [2]. The more accurate load modeling
can even supplement the conventional load forecasting [3]–[5]
under some particular circumstance with missing data. How-
ever, due to the high frequency changes caused by uncertain
power resources, parameters of CLM present more and more
time-varying characteristics [6].

Both statistical and heuristic techniques have been widely
used to identify load parameters in recent years. For sta-
tistical techniques, Hiskens [7] used nonlinear least-square
based method to estimate parameters by the best fit between
measurements and model response. Zhao et al. [8] utilized
maximum likelihood approach to estimate parameters for
power system state dynamics. Kock et al. [9] used the gradient
method to estimate parameters of the induction motor. Other
techniques such as Kalman filter and vector fitting have also
been used in the literature for the parameter identification
of dynamic load modeling. Rouhani and Abur [10] used an
unscented Kalman filter to track the unknown parameters of
the exponential dynamic load model. Zhang et al. [11] used
the trajectory sensitivity vector fitting to obtain a feature vector
for parameters in the time-varying response of the load. Ma et
al. [12] utilized the support vector fitting of load data for load
modeling with a strong generalization capability to describe
the time-varying characteristics of the whole dataset.

For heuristic techniques, neural networks [13], [14] were
used to describe the complicated time-varying behavior of load
modeling. The simulated annealing algorithm [15] was used
to find the global optimum for identifying load parameters.
However, most of these algorithms do not consider the time-
varying characteristics of load parameters. Ignoring the time-
varying characteristics of load modeling can lead to erroneous
results in the transient stability studies of power system
operations. In other words, the estimated parameters at the
current time are significantly related with not only the current
measurements (e.g., bus voltage, active power, and reactive
power) but also the previous parameters of load modeling.

Recently, time-varying load modeling has been focused
on by worldwide researchers [16]. For example, Wang et
al. [6] proposes a robust time-varying parameter identification
technique for CLM in a batch-model regression form. Huang et
al. [17] developed time-varying load models to determine the
photovoltaic penetration level in a distribution network. Wang
et al. [18] developed a time-varying exponential load model
to assess conservation voltage reduction effects. However, all
the aforementioned methods identify load parameters by only
considering measurements on a corresponding bus where this
load is connected with. Since all the loads are integrated into
one power system, a perturbation in the system can cause
different impacts on the parameter identification of each load.

Thus, there exists a relationship between the targeted load
and other loads that are connected with the same system.
In addition, the conventional load modeling research cannot
characterize the impacts of ambient noises, which may reduce
the estimation accuracy of load parameters. In a prescribed
power system, the ambient noises of estimated parameters are
related with not only measurements of the targeted load but
also those of other system-wide loads. By considering ambient
noises, it is expected to improve the estimation accuracy of
load parameters.

The combined time-varying parameter identification (TVPI)
of the system-wide load modeling is usually too complicated to
be expressed by the component-based parametric model. The
sophisticated behavior and attendant challenge with identifying
accurate time-varying parameters causes insufficient and inac-
curate results in load modeling problems. It is still challenging
to use a specific mathematical or physical model to character-
ize both the time-varying and system-wide relationship.

With the rapid development of Artificial Intelligence
(AI) [19], it is possible to use deep learning techniques
to represent the complicated nonlinear relationship of the
combined time-varying characteristics of system-wide load
modeling. Though several artificial neural networks (ANN)
methods have been explored in this topic, such as feed-
forward neural networks [13], [14], [20], [21] and fuzzy neural
networks [22], [23], these models cannot efficiently learn
the temporal behavior of time series data corresponding to
time-varying load parameters and measurements due to the
lack of a recurrent structure. Moreover, such models contain
shallow neural architectures with few hidden layers. Hence,
the generalization capability of these approaches are relatively
low. From the aspect of compact representation, it is shown
that deep hypothesis spaces have exponential advantages over
shallow spaces in terms of representing target functions [24].
More specifically, when an implicit assumption in a hypothesis
space is approximately satisfied by the target function (for
example, the deep composition of piece-wise linear transfor-
mations), deep networks yield much higher accuracy compared
to shallow models.

To bridge the gap in load modeling, we seek to address two
critical questions for power system operators. Is it possible
to use deep learning techniques to consider both the time-
varying and system-wide relationship for load modeling? Can
deep learning techniques really improve the accuracy of TVPI
compared with other methods? To this end, this paper develops
a novel two deep learning architectures for TVPI of load
modeling, which is capable of capturing meaningful temporal
patterns from the time series of load parameters and mea-
surements. The main contributions of this paper include: (i)
developing a deep neural architecture with high generalization
capacity and expressivity for the TVPI of load modeling; (ii)
presenting a multi-modal structure with a joint representation
layer for the first time in the area of load modeling; and (iii)
applying the multi-modal long short-term memory (M-LSTM)
method to find the optimal lag values of load parameters and
measurements.

The organization of this paper is as follows. In Section II,
the system-wide TVPI modeling of CLM is briefly introduced.
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Fig. 1. Equivalent circuit of CLM consisting of ZIP and IM model.

Section III presents the detailed deep learning technique based
on the multi-modal long short-term memory. Case studies
and result analysis are discussed in Section IV. Concluding
remarks are summarized in Section V.

II. SYSTEM-WIDE TVPI MODELING

A. Time-Varying Parameters

1) Time-Varying ZIP Model: One of the typical static load
model is the ZIP model, which mainly consists of three
parts. The first part is the constant impedance (Z) component.
The second part is the constant current (I) component. The
third part is the constant power (P) component. Percentages
of three components are assumed to be time-varying due to
whether conditions or customer behaviors. The ZIP model is
mathematically formulated by:

PZIP,t = aP,t (Vt/V0)
2
+ bP,t (Vt/V0) + cP,t (1)

QZIP,t = aQ,t (Vt/V0)
2
+ bQ,t (Vt/V0) + cQ,t (2)

where percentage parameters satisfy aP,t+bP,t+cP,t = 1 and
aQ,t + bQ,t + cQ,t = 1 at any time period t.

2) Time-Varying IM Model: The time-varying induction
motor (IM) models are defined with a similar approach to the
synchronous machine. In this paper, the typical singe-cage ro-
tor model is used by additionally considering the time-varying
impacts of weather conditions and customer behaviors. The
simplified electrical circuit used for the single-cage induction
motor is shown in Fig. 1. The differential algebraic equations
(DAEs) of state variables are formulated by:

dv′d,t
dt

=
−rR,t

xR,t + xm,t

(
v′d,t +

x2
m,t

xR,t + xm,t
iq,t

)
+ stv

′
q,t (3)

dv′q,t
dt

=
−rR,t

xR,t + xm,t

(
v′q,t −

x2
m,t

xR,t + xm,t
id,t

)
− stv′d,t (4)

dst
dt

=
1

2Ht

[
Tm0 (1− st)2 − v′d,tid,t − v′q,tiq,t

]
(5)

where the d-axis stator current id,t and the q-axis stator current
iq,t are given by:

id,t =
rS,t (ud,t − v′d,t) + x′t (uq,t − v′q,t)

r2
S,t + x′2t

(6)

iq,t =
rS,t (uq,t − v′q,t)− x′t (ud,t − v′d,t)

r2
S,t + x′2t

(7)

where the quadratic sum of the d- and q-axis bus voltages
ud,t and uq,t should equal the square of the measured voltage,
given by:

V 2
t = u2

d,t + u2
q,t (8)

The short circuit reactance x′t is formulated by:

x′t = xS,t +
xm,txR,t
xm,t + xR,t

(9)

The active and reactive power of the IM model can be
formulated by using the states, time-varying parameters, and
bus voltage variables, given by:

PIM,t =
[
rS,t
(
u2
d,t + u2

q,t − ud,tv′d,t − uq,tv′q,t
)
−

x′t (ud,tv
′
q,t − uq,tv′d,t)]/

(
r2
S,t + x′

2
t

) (10)

QIM,t =
[
x′t
(
u2
d,t + u2

q,t − ud,tv′d,t − uq,tv′q,t
)
−

rS,t (ud,tv
′
q,t − uq,tv′d,t)]/

(
r2
S,t + x′

2
t

) (11)

Based on models (1)–(2) and (10)–(11), the active and
reactive power of the time-varying composite ZIP and IM
model can be formulated by:

Pt = PZIP,t + PIM,t (12)
Qt = QZIP,t +QIM,t (13)

3) Identifying Time-Varying Parameters: Assuming that the
sets of time-varying parameter variables and measurement
variables are denoted as:

ξtdξ=[rS,t, xS,t, xm,t, xR,t, rR,t, Ht, aP,t, bP,t, aQ,t, bQ,t]
(14)

M t
dM = [Pt, Qt, Vt] (15)

where dξ and dM are the dimensions of parameter variables
ξ and measurement variables M , i.e., dξ=10 and dM=3.

Based on the mathematical models in (1)–(13), the highly
complex nonlinear relationship between parameter variables
and measurement variables can be generalized as:

ξtdξ = f ξM
(
M t

dM

)
+ εξM (16)

Normally, values of time-varying parameter variables fluc-
tuate slightly within a short time period. Thus, the relationship
between adjacent time intervals can be expressed as:

ξtdξ = ξ
t−1
dξ

+ εξξ1 = ξt−2
dξ

+ εξξ2 = · · · = ξt−kξdξ
+ εξξk (17)

where kξ is the maximum lag value considered for the time
series of parameter variables ξ. Similarly, considering the
time-series characteristics of measurements, the model in (16)
can be expanded as:

ξtdξ = f ξM
(
M t

dM

)
+ εξM = f ξM1

(
M t−1

dM

)
+ εξM1

= · · · = f ξMk

(
M t−kM

dM

)
+ εξMk

(18)

where kM is the maximum lag values considered for the time
series of measurements M .

Based on (17) and (18), a nonlinear function F ξM is used
to represent this relationship with lag values:

ξtdξ = F ξM

(
ξt−1
dξ

, · · · , ξt−kξdξ
,M t

dM , · · · ,M
t−kM
dM

)
(19)
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Fig. 2. Structure of the proposed multi-modal LSTM.

Normally, kξ and kM cannot be too large since the current
parameters have strong relationships with those in a short-term
due to the time series characteristics. In this paper, a supervised
learning algorithm is used to find the optimal values of kξ
and kM . When kξ=1 and kM=0, the model considering (17)
and (18) is returned to the conventional TVPI model [6] which
only considers the previous parameters at time step t-1 and the
current measurements at time step t.

B. System-Wide TVPI

All of the parameters and measurements in Section II-A are
considered on the targeted bus where the load parameters are
to be estimated. Normally, measurements on the targeted bus
are related with those on system-wide load buses based on
the power flow analysis. A nonlinear function FM is used to
represent this relationship:

M i,t
dM

= FM

(
M1,t

dM
, · · · ,MN,t

dM

)
(20)

where i is the index of the targeted load bus. N is the total
number of load buses in the system.

By integrating (19) and (20), the system-wide TVPI model
can be expressed by a highly nonlinear function FξM in (21).
In this function, symbols of ξdξ×kξ and MdM×(kM+1) are
respectively given by:

ξdξ×kξ =
(
ξt−1
dξ

, ξt−2
dξ

, · · · , ξt−kξdξ

)
(22)

MdM×(kM+1) =
(
· · · ,Mn

dM×(kM+1), · · · ,M
N
dM×(kM+1)

)
(23)

Mn
dM×(kM+1) =

(
Mn,t

dM
,Mn,t−1

dM
, · · · ,Mn,t−kM

dM

)
n = 1, 2, · · · , N

(24)

× 

× 

+

× 

Round Round

Round

Round

Nextlayer/Output

Fig. 3. Structure of the proposed LSTM block.

where ξt−1
dξ

denotes the time-varying parameters vector of the
targeted load at the previous time step t-1. Mn

dM×(kM+1)

denotes the measurements vector on bus n with the lag kM .
Its element Mn,t

dM
denotes the measurements vector at time t

on bus n. However, this function cannot be analytically for-
mulated and solved to estimate time-varying load parameters.
Since the deep learning technique is significantly powerful
in representing complex nonlinear relationship, it is used and
introduced in the following description.

III. DEEP LEARNING BASED TVPI

Essentially, the TVPI of CLM is a mathematical represen-
tation of the highly nonlinear relationship between current
parameters and previous ones as well as current measurements,
i.e., bus voltage, active power, and reactive power. The task
of time-varying parameter identification is to constitute a
representation that describes time-varying characteristics espe-
cially for the transient period. Towards this end, the M-LSTM
technique is developed to characterize the TVPI for system-
wide load modeling.

The M-LSTM is a pattern recognition neural architecture
capable of capturing highly nonlinear temporal features from
multiple high dimensional time series. At each time step t,
the M-LSTM takes 2-D tensors of load parameters vector
ξdξ×kξ and system-wide measurements vector MdM×(kM+1)

as different modalities of the temporal input data. The structure
of M-LSTM is shown in Fig. 2. An LSTM network [25] is
assigned to each element of the historical parameters vector
ξ. At each training time step t, the LSTM observes kξ × dξ
temporal element in ξ consecutively starting from the first
one, that is ξt−1

dξ
and going through all the elements until the

last observations of ξt−kξdξ
. The latent variable vector obtained

from the LSTM at the ith round of network update is denoted
by hξ (i) which is the ith element of the parameter temporal
feature tensor hξ. When all the input vectors in ξ are observed,

ξtdξ = FξM
(
ξt−1
dξ

, · · · , ξt−kξdξ︸ ︷︷ ︸
ξdξ×kξ

,M1,t
dM
, · · · ,M1,t−kM

dM︸ ︷︷ ︸
M1

dM×(kM+1)

,M2,t
dM
, · · · ,M2,t−kM

dM︸ ︷︷ ︸
M2

dM×(kM+1)

, · · · ,MN,t
dM
, · · · ,MN,t−kM

dM︸ ︷︷ ︸
MN

dM×(kM+1)︸ ︷︷ ︸
MdM×(kM+1)

)
(21)
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the average of temporal latent variables at time step t is
computed by:

utξ =
1

kξ

∑kξ
i=1 hξ (i) (25)

Similarly with the aforementioned process of the parameter
vector ξ, the system-wide measurement vector M is repeat-
edly disposed. The average of temporal latent variables for
measurements at time step t is computed by:

utM =
1

kM + 1

∑kM+1
i=1 hM (i) (26)

where hM (i) is the latent variable vector for measurements
obtained from the LSTM at the ith round of network update.

To describe the principle of the proposed LSTM in Fig. 2,
Fig. 3 shows the structure of LSTM at the ith update
round with the historical dξ dimensional input ξt−idξ

and the
corresponding hidden values of hξ (i) by taking parameters
as an example. The same structure of LSTM can also be
applied to the system-wide measurements. As can be seen,
this network consists of memory blocks with memory cell
units having self-connections aimed to maintain the temporal
state corresponding to each update round. In addition to the
memory cells, the LSTM blocks contain special multiplicative
computational units named as the input, output, and forget
gate. The input activation that is fed to the memory cell is
controlled by the input gate. The magnitude of the output
flow corresponding to the cell activations is decided by the
output gate. The forget gate is capable to scale the current
temporal LSTM state before adding it back to the LSTM
memory using its self-recurrent weights. Here, ξt−idξ

is the input
at the update round i, and hξ (i) is the output of the current
LSTM block. The latent vector corresponding to the LSTM
state at round i-1, hξ (i− 1), is fed to the LSTM in the next
round in order to make a recurrent model to capture high-level
temporal abstractions in the temporal data. Symbols of I(i),
f(i), and o(i) represent the vectors of the input, forget, and
output gates. The gates’ outputs are calculated as:

I(i) = T
[
Wiξ

t−i
dξ

+ Uihξ (i− 1) + bi

]
(27a)

f(i) = T
[
Wfξ

t−i
dξ

+ Ufhξ (i− 1) + bf

]
(27b)

o (i) = T
[
Woξ

t−i
dξ

+ Uohξ (i− 1) + bo

]
(27c)

where T [·] is the nonlinear activation function and usually
considered as a sigmoidal function for the input, output, and
forget vectors. Here, the parameter space has a set of tunable
weight matrices J = {Wi,Wf ,Wo, Ui, Uf , Uo} and bias
vectors B = {bi, bf , bo}. The updated state of the memory
cell at round i is denoted by C(i). To obtain C(i), the
model partially forgets the existing memory content stored in
C(i− 1) and adds the temporal update value C̃ (i) which can
be computed by:

C̃ (i) = T̃
[
Wcξ

t−i
dξ

+ Uchξ (i− 1) + bc

]
(28a)

C (i) = f (i)C (i− 1) + I (i) C̃ (i) (28b)

The set of tunable parameters of the memory cell is defined
as S = {Wc, Uc, bc} where Wc and Uc are the weights while

Start

Yes

No

Yes Yes

No No

Parallel processes start

Update the parameters in J, B, and S

Yes

End
No

Parallel processes end

Training step:
Round steps:
Training epoch:

Feed input

to the measurements  LSTM  

Obtain            and

Feed input        to

the parameters  LSTM  

Obtain            and

Compute      and       by temporal pooling

Compute estimated load parameter

Fig. 4. Supervised learning algorithm of the proposed multi-modal LSTM
architecture for time-varying TVPI.

bc is a bias vector. Here, a hyperbolic tangent function is
employed as the nonlinear activation T̃ [·] for the memory
content update value in (28). Based on (28), the latent variable
resulted by the LSTM at the ith round is computed as
h (i) = o (i) × T̂ [C (i)] where T̂ [·] is a nonlinear tangent
hyperbolic activation for mapping the memory content C(i)
to the latent space. To train the LSTM, the set of its total
parameters ϕ = J ∪B ∪ S is trained by using the stochastic
gradient descent algorithm at each time step t.

Similar temporal feature extraction model is also applied
for measurements M with kM +1 temporal columns for each
training step. To update the corresponding LSTM parameters,
at each round i′, a new representation vector hM (i′) is
computed. The total temporal feature utM in (26) is obtained
by taking a temporal average over all values of the temporal
representation vector hM during (kM + 1) rounds.

Based on (25) and (26), the temporal pooling is correspond-
ingly generated for parameters and measurements. Finally,
the temporal averages are put into a linear regression model
g(utξ, u

t
M ) at each training step t to estimate the time-varying

parameter values at the current time step t, i.e., ξ̂
t

dξ
, by using

the historical parameter and measurement time series.
Fig. 4 demonstrates the flow chart of the supervised al-

gorithm to update the proposed M-LSTM architecture. The
feed-forward algorithm is executed on the LSTM models
corresponding to the parameters and measurements in kξ and
kM + 1 rounds, respectively. In this stage, vectors hξ(i) and
hM (i) are obtained. Then, the temporal pooling layer obtains
the average temporal latent utξ and utM . The linear regression

is employed to output ξ̂
t

dξ
as an estimation for the actual ξtdξ
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at the current time step t. During the aforementioned process,
the supervised loss function E =

[
ξtdξ− ξ̂

t

dξ

]2
is used with the

stochastic gradient descent (SGD) with Ns training samples
and maximum epoch Lmax to tune the proposed M-LSTM
network.

IV. CASE STUDIES

To evaluate the performance of the proposed methodology,
it is tested on two test cases: 23- and 68-bus systems. The
composite ZIP and IM loads are used to validate the proposed
M-LSTM method. Four benchmarks including the Time De-
lay Neural Network (TDNN) [26], Nonlinear Autoregressive
Neural Network with External Input (NARX) [27], Gated
Recurrent Unit (GRU) network [28], and single model LSTM
(S-LSTM) are used to compare with the proposed M-LSTM
method. The learning rate is set to 10−3. Moreover, to avoid
overfitting, L2 regularization with the regularization coefficient
λ=5×10−3 is applied by using the error Rθ for each parameter
θ of M-LSTM, added to the supervised loss function E:

Rθ =
λ

2
‖θ‖2, θ ∈ ϕ (29)

All case studies using the deep learning technique are
carried out using a high-level neural networks API, Keras [29],
on an Intel core-i7 CPU desktop with 32 GB of RAM memory
and Geforce GTX 1080 graphic card. Six metrics are used
to evaluate the performance of different methods, includ-
ing: correlation coefficient, root mean square error (RMSE),
maximum absolute error (MaxAE), mean absolute percentage
error (MAPE), fourth root mean quartic error (4RMQE), and
95th percentile. A smaller value indicates a better estimation
performance for most of the metrics, except for the correlation
coefficient. Detailed information about these metrics can be
found in [30], [31].

In Section IV-A and IV-B, the lag values kM and kξ are
first picked from the predefined domain. Then, the LSTM is
trained on the training dataset using the chosen lag values.
For both of 23- and 68-bus systems, the training set contains
80% of collected data samples. The optimal LSTM with the
least validation error is chosen as the optimal model. The
model is further evaluated on the testing dataset to assess
the performance of LSTM with the chosen kM and kξ in
terms of RMSE and MAPE. The estimated load parameters
using the LSTM model in the validation and testing datasets
consist of 10% of the dataset gathered from the 23- and
68-bus systems, respectively. Error metrics using different
methods for estimating load parameters in the validation
dataset are quantitatively compared in Section IV-A and IV-B,
respectively. In Section IV-C, the estimated load parameters
in the testing dataset calculated in Section IV-B are put
into the 68-bus system to estimate measurements, i.e., active
power, reactive power, and voltage. The comparison between
estimated measurements and real measurements can verify the
effective usage of estimated time-varying parameters.

A. 23-bus System

The data of the first case is generated by the Siemens
PSS/E 23-bus system [32], [33]. There is only one CLM with
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Fig. 5. Validation (a) RMSE and (b) MAPE of M-LSTM for the 23-bus
system.
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(c) Reactive power data with 23 ground faults

Fig. 6. Time domain curves of voltage, active power, and reactive power on
Bus 153 (the first load bus) with 23 ground faults in the 23-bus system.

time-varying parameters connected into this system. The mean
values of these parameters rS,t, xS,t, xm,t, xR,t, rR,t, Ht,
aP,t, bP,t, aQ,t, bQ,t are set as 0.05, 0.2, 4, 0.2, 0.01, 20,
0.3, 0.5, 0.2, and 0.4. For each parameter, a Gaussian random
variable with zero mean and standard deviation of a hundredth
of the mean value of the corresponding parameter is added
to simulate parameter changes [6]. In this system, there are
five load buses. Thus, the dimension of output variables is
10 (=10×1) and that of input variables is 5×3×(kM + 1)+
10×kξ. To obtain sufficient data for training, 23 ground fault
events are simulated on each bus. The sampling time is set as
0.4 s. For each event, the time horizon is set as 32 s. Time
domain curves of voltage, active power, and reactive power on
Bus 153 (the first load bus) with 23 ground faults are shown
in Fig. 6.

Fig. 5 shows the validation RMSE and MAPE of M-
LSTM for the 23-bus system, as a function of the number
of temporal training steps, i.e., the lag numbers kξ and kM ,
respectively. The maximum lag values of kξ and kM are set
as 8 and 7, respectively. The deeper color means the smaller
RMSE/MAPE and a better performance of the lag value. As
can be seen in Fig. 5a, in the dark blue area, the M-LSTMs
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Fig. 7. An example of rS,t with several samples randomly selected in the
23-bus system.

TABLE I
NORMALIZED RMSE OF ALL PARAMETERS USING FIVE METHODS IN

23-BUS SYSTEM

Parameters Estimation Methods

TDNN NARX GRU S-LSTM M-LSTM

rS 10.16 9.32 6.82 6.26 2.78
xS 5.73 5.26 3.84 3.53 1.57
xm 5.10 4.68 3.42 3.14 1.40
xR 4.32 3.97 2.90 2.66 1.18
rR 6.79 6.23 4.56 4.19 1.86
H 3.43 3.15 2.31 2.12 0.94
aP 3.74 3.43 2.51 2.31 1.02
bP 3.14 2.88 2.11 1.93 0.86
aQ 5.01 4.60 3.36 3.09 1.37
bQ 3.66 3.36 2.46 2.26 1.00

TABLE II
ERROR METRICS AND RUNNING TIME OF FIVE METHODS TO ESTIMATE

xR IN 23-BUS SYSTEM

Metrics Estimation Methods

TDNN NARX GRU S-LSTM M-LSTM

Correlation coeff. 0.91 0.92 0.96 0.96 0.99
RMSE (×10−4) 8.88 8.15 5.96 5.47 2.43
MaxAE (×10−3) 1.54 1.41 1.03 0.95 0.42
MAPE (×10−4) 7.73 7.09 5.19 4.76 2.11

4RMQE (×10−3) 1.02 0.94 0.68 0.63 0.28
95th perc. (×10−3) 1.44 1.32 0.96 0.88 0.39

Running Time for
Each Input Sample [s] 0.009 0.027 0.063 0.095 0.115

with the lag values of kξ (2–4) and kM (1–4) shows the
smallest RMSE values. The same observation can also be
found in Fig. 5b, where the best performance of M-LSTM
is with the same range of lag values. For the 23-bus system,
this observation can be used by power system operators when
choosing input variables for the proposed M-LSTM.

In order to evaluate the generalization capability and show
the capability of our proposed architecture to avoid the over-
fitting issues, Table I compares normalized RMSE values of
all parameters using five estimation methods. As can be seen,
the proposed M-LSTM method performs best and shows the
smallest normalized RMSE values for all parameters compared
with other benchmark methods. For the detailed statistical
analysis, Table II compares the numerical performance of
different methods for the rotor reactance xR. As shown in
this table, the proposed M-LSTM method can significantly
increase the correlation coefficient metric and lower other
metrics. Taking RMSE and MAPE as an example, for the
benchmark methods, TDNN method has the largest RMSE
and MAPE. This is because it does not have a recurrent

structure and can only capture low-level abstractions of the
training data. However, the proposed M-LSTM method can
improve RMSE by 72.64% and MAPE by 72.71% compared
with TDNN. Compared with S-LSTM, M-LSTM method can
also improve RMSE by 55.58% and MAPE by 55.67%. For
the sake of simplicity, Fig. 7 shows an example of rS,t with
50 samples randomly selected to compare the performance of
M-LSTM and S-LSTM. As can be seen, M-LSTM shows a
more fitting accuracy compared with S-LSTM. This is mainly
due to the multi-modal structure of the proposed model that
can make full use of different modalities of the input data to
accurately estimate the underlying target function. However,
S-LSTM does not provide the joint representation of different
modalities of the input data. Hence, it is not able to use the
data effectively.

B. 68-bus System

The data of the second case is generated by the 5-area 16-
machine 68-bus test system (also known as the New England
and New York Interconnected system) [34]. There are four
CLM with time-varying parameters connected on buses 27,
39, 49, and 60. The mean values of these parameters rS,t,
xS,t, xm,t, xR,t, rR,t, Ht, aP,t, bP,t, aQ,t, bQ,t are set as
0.01, 0.15, 5, 0.15, 0.05, 3, 0.35, 0.45, 0.25, 0.45. In this
system, there are 35 load buses. Thus, the dimension of
output variables is 40 (=10×4) and that of input variables is
35×3(kM+1)+40×kξ. In the 68-bus system the changes in
the network topology is captured by outages in transmission
line (i.e., breaker opening). It is not expected that the topology
of the system changes after an outage of the transmission line
in the simulation period. Here, the proposed M-LSTM model
incorporates the data collected from original network topology
as well as the reconfigured network (after transmission line
outage) to estimate the time-varying load parameters. Once
the grid topology changes, the data collected at each time step
with the new network topology is also used to determine the
load parameters for the next time step. The sampling time is
set as 0.1 s. For each event, the time horizon is set as 20
s. Time domain curves of voltage, active power, and reactive
power on Bus 17 (the first load bus) with 68 transmission line
outages are shown in Fig. 8.

Fig. 9 shows the validation RMSE and MAPE of M-LSTM
for the 68-bus system, as a function of the number of temporal
training steps, i.e., the lag numbers kξ and kM , respectively.
The maximum lag values of kξ and kM are set as 8 and 7,
respectively. Fig. 9a shows the smallest RMSE values with the
lag values of kξ (3–6) and kM (5–7). The similar observation
can also be found in Fig. 9b with the same range of lag values.
Compared with the results in the 23-bus system, the lag value
of kξ corresponding to the smallest RMSE and MAPE has a
slight increase while that of kM has a significant increase. This
is mainly because the M-LSTM of the 68-bus system leads to
better generalization using more input variables and output
variables. Another interesting finding is that the optimal lag
value of kM increases larger than that of kξ. This phenomenon
indicates that power system operators need to gather more
information of system-wide measurements of active power,
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(b) Active power data with 68 transmission line outages
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Fig. 8. Time domain curves of voltage, active power, and reactive power on
Bus 17 (the first load bus) with 68 transmission line outages in the 68-bus
system.
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Fig. 9. Validation (a) RMSE and (b) MAPE of M-LSTM for the 68-bus
system.
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Fig. 10. Topology of the 68-bus system with an example of one transmission
line outages.

reactive power, and voltage, in order to estimate more accurate
time-varying parameters.

Table III compares normalized RMSE values of all pa-
rameters using five estimation methods. As can be seen,
the proposed M-LSTM method performs best and shows the
smallest normalized RMSE values for all parameters compared
with other benchmark methods. For the detailed statistical

TABLE III
NORMALIZED RMSE OF ALL PARAMETERS USING FIVE METHODS IN

68-BUS SYSTEM

Parameters Estimation Methods

TDNN NARX GRU S-LSTM M-LSTM

rS 17.16 17.16 15.70 14.60 10.56
xS 16.96 16.93 15.41 14.85 10.30
xm 17.24 16.57 15.30 14.51 10.29
xR 17.16 16.93 15.92 14.70 10.40
rR 17.26 15.97 15.84 14.76 10.38
H 16.80 16.74 15.44 14.68 10.31
aP 17.41 16.70 15.06 14.11 10.17
bP 17.55 17.22 16.26 14.93 10.60
aQ 17.14 17.08 15.40 14.75 10.50
bQ 16.88 17.19 15.14 14.84 10.26

TABLE IV
ERROR METRICS AND RUNNING TIME OF FIVE METHODS TO ESTIMATE

rS IN 68-BUS SYSTEM

Metrics Estimation Methods

TDNN NARX GRU S-LSTM M-LSTM

Correlation coeff. 0.018 0.006 0.016 0.029 0.306
RMSE (×10−4) 1.77 1.77 1.62 1.51 1.09
MaxAE (×10−4) 8.98 8.20 7.38 6.43 3.70
MAPE (×10−4) 1.17 1.15 1.15 1.13 0.87

4RMQE (×10−4) 2.78 2.73 2.44 2.17 1.43
95th perc. (×10−4) 4.02 3.98 3.52 3.11 2.14

Running Time for
Each Input Sample [s] 0.024 0.039 0.078 0.104 0.129

analysis, Table IV compares the numerical performance of
different methods for the stator resistance rS in the 68-bus
system. As can be seen, the proposed M-LSTM method can
significantly increase the correlation coefficient metric and
lower other metrics. Taking RMSE and MAPE metrics as an
example, for the benchmark methods, TDNN method yields
poor results with the largest RMSE and MAPE values. The
S-LSTM improves RMSE by 14.69% and MAPE by 3.42%
compared with TDNN method. However, the proposed M-
LSTM can significantly improve RMSE by 38.42% and MAPE
by 25.64% compared with TDNN method. Compared with
S-LSTM, M-LSTM method can improve RMSE by 27.81%
and MAPE by 23.01%. These aforementioned findings are
consistent with those in Section IV-A and can verify the
robustness of the proposed method. This is mainly because
it can provide the high-level abstraction and contain a multi-
modal structure.

C. Effectiveness of Estimated Time-Varying Parameters

To verify the effectiveness of estimated time-varying pa-
rameters, the results obtained by S-LSTM and M-LSTM
methods are respectively put into CLM to get the estimated
measurements: active power, reactive power, and voltage. A
transmission line outage on transmission line 60–61 in the 68-
bus system is simulated to gather the estimated measurements,
which can be seen in Fig. 10. Fig. 11 compares the estimated
measurements with the real data by using S-LSTM and M-
LSTM. As can be seen, the results estimated by M-LSTM
method (the orange line) are closer to the real measurements
(the blue line). The slight difference between the real data and
the estimated measurements by M-LSTM is mainly caused by
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Fig. 11. Comparison of the estimated active power (a), reactive power (b),
and voltage (c) obtained by S-LSTM and M-LSTM methods.

the noise. However, the results estimated by M-LSTM method
(the dashed green line) are farther from the real measurements,
especially for the time interval during 10–14 s.

Table V shows the performance of five methods considering
the RMSE and MAPE metric of estimated active power, reac-
tive power, and voltage. As shown in this table, both S-LSTM
and M-LSTM methods outperform TDNN, NARX, and GRU
leading to smaller values of RMSE and MAPE. For TDNN,
NARX, and GRU, the RMSEs of three measurements are
in the larger range of 0.03–0.05, 0.015–0.03, and 0.01–0.02,
respectively. For S-LSTM and M-LSTM methods, RMSEs
of three measurements are in the smaller range of 0.01–
0.03, 0.005–0.015, and 0.005–0.01, respectively. A similar
observation is made for the MAPE metrics. Comparing L-
LSTM with M-LSTM, for the estimated active power, M-
LSTM method can improve RMSE by 48.48% and MAPE by
38.46% compared with S-LSTM method. For the estimated
reactive power, M-LSTM method can improve RMSE by
34.86% and MAPE by 24.24%. For the estimated voltage, M-
LSTM method can improve RMSE by 17.28% and MAPE by
9.84%. This is mainly because S-LSTM does not consider the
joint representation of modalities of input variables. M-LSTM
can estimate the most accurate time-varying parameters which
can be used to get measurements with the best RMSE and
MAPE metrics to the real data. This finding can verify the
effectiveness of the proposed M-LSTM method.

TABLE V
ERROR METRICS OF ESTIMATED ACTIVE POWER, REACTIVE POWER,

AND VOLTAGE IN FIVE METHODS

Metrics Estimation
Methods

Measurements
Active Power Reactive Power Voltage

RMSE

TDNN 0.0421 0.0205 0.0187
NARX 0.0384 0.0196 0.0144
GRU 0.0357 0.0182 0.0103

S-LSTM 0.0264 0.0109 0.0081
M-LSTM 0.0136 0.0071 0.0067

MAPE

TDNN 0.0101 0.0099 0.0095
NARX 0.0094 0.0091 0.0082
GRU 0.0087 0.0088 0.0079

S-LSTM 0.0065 0.0066 0.0061
M-LSTM 0.0040 0.0050 0.0055

D. Impact of a Limited Number of Monitored Load Buses and
System Events

To validate the effectiveness of the proposed M-LSTM
method with limited data, two types of limitations are consid-
ered: a limited number of monitored load buses and a limited
number of system events. The priority on monitoring of the
load bus is determined based on the value of its active power.
That is to say, the operators give higher priority to the buses
with larger active power consumption for monitoring. For
example, assuming that only measurements on three load buses
can be monitored by operators, we choose to monitor the first
three load buses with largest active power consumption. Based
on the above consideration, limited number of load buses are
considered for being monitored.

Similarly, a limited number of system buses and trans-
mission lines are selected for ground faults and outages
respectively. In this context, higher priority is given to the
load bus with larger active power consumption as well as the
transmission lines that transmit the larger volume of active
power. For example, assuming that the operators can only
simulate nine buses with ground faults in the whole system,
the first nine system buses with the largest active power
consumption are chosen as the limited number of ground fault
buses. This is because the ground fault on the load bus with
larger active power consumption could significantly affect the
stability of the power grid compared to the faults on load buses
with smaller active power consumption.

Therefore, higher priority is given to the load bus with larger
active power consumption as well as the transmission lines
that transmit the larger volume of active power. Similarly, the
outage of the transmission lines that carry a large volume of
active power could significantly impact the stability of the
power system. Considering the limited number of monitored
load buses and system events (i.e., a ground fault on buses or
transmission line outages), the proposed M-LSTM model is
trained and the corresponding RMSE and MAPE metrics of
the estimated time-varying parameters are computed.

For the 23-bus system with ground faults, Fig. 12 shows
the RMSE and MAPE of the estimated parameter aP,t in the
ZIP load model. The vertical axis presents the change in the
number of monitored load buses, while the horizontal axis
shows the change in the number of ground faulted buses. As
shown in this figure, with the increasing number of monitored
load buses (from top to bottom of the vertical axis) and
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(a) RMSE of aP,t (b) MAPE of aP,t

Fig. 12. An example of RMSE and MAPE results of parameter aP,t in the
23-bus system.

(a) RMSE of xR,t (b) MAPE of xR,t

Fig. 13. An example of RMSE and MAPE results of parameter xR,t in the
68-bus system.

system buses with ground faults (from left to right in the
horizontal axis), both RMSE and MAPE metrics are reduced.
This reflects the better accuracy of M-LSTM when more
measurements and system events are provided.

For the 68-bus system with outages in transmission lines,
Fig. 13 shows the RMSE and MAPE for the estimated
parameter xR,t. Similar observations were made in this case,
i.e., increasing the number of monitored load buses (from top
to bottom of the vertical axis) and system buses with ground
faults (from left to right in the horizontal axis) decreases both
RMSE and MAPE metrics and yields more accurate estimates
of the parameters.

Overall, Figs. 12 and 13 indicate that the estimation ac-
curacy of the developed M-LSTM method is increased when
more information on measurements and system events (e.g.,
ground faults and transmission line outages) is provided to the
system operator.

E. Sensitivity Analysis Considering the Variabilities of Param-
eters

To efficiently simulate the time-varying behavior of load
modeling in practice, different variability measures for the
load parameters are considered to capture their impacts on
the estimation accuracy of the load parameters. The time-
varying parameters are generated using (30) in which µξ is
the mean value of time-varying parameters, and N (·) is the
normal distribution function with mean zero and the standard
deviation µξ × α1. In this case, five values of α1 are chosen
from 0.01, 0.02, 0.03, 0.04, and 0.05, respectively.

ξ ∼ µξ + N (0, µξ × α1)︸ ︷︷ ︸
Gaussian Random V ariable

(30)

Fig. 14 shows the accuracy measures for five methods with
the increase of α1. It is shown that for all benchmarks, both
RMSE and MAPE metrics increase with the proportion α1.
Therefore, higher variability of parameters would lead to lower
estimation accuracy. However, considering the relatively small
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Fig. 14. RMSE and MAPE of five methods with different variabilities of load
parameters.

RMSE [2, 6]×10−4 and MAPE [2, 5]×10−4, the proposed M-
LSTM method still outperforms other four estimation methods,
i.e., TDNN, NARX, GRU, and S-LSTM with a higher input
load parameter error. This is due to better generalization and
the capability of making use of the measurement information.

F. Computational Time Analysis

1) Execution Time: Tables II and IV show the running
time for each input sample in the 23- and 68-bus systems,
respectively. As shown in these tables, TDNN and NARX have
fast computation performance as they are shallow architectures
with low number of computational layers. However, these
methods are error-prone. Compared to TDNN and NARX, the
GRU, S-LSTM, and M-LSTM methods are deep neural archi-
tectures with better accuracy due to multiple computational
layers. Among deep networks, GRU has smaller time com-
plexity due to a smaller set of parameters. However, LSTM
variations (S-LSTM and M-LSTM) yield better accuracy due
to a larger number of parameters that help these models to have
higher generalization capability. M-LSTM has slightly more
time complexity compared to S-LSTM due to its additional
temporal pooling and regression layers. Considering the trade-
off between time complexity with accuracy, the M-LSTM
model is more preferable compared to other benchmarks due
to significantly higher accuracy. In addition, the execution time
of the M-LSTM method is small enough to be employed for
the problem of estimating time-varying parameters for load
modeling.

2) Time Complexity Analysis (Asymptotic Analysis): The
developed M-LSTM model consists of four major computa-
tional steps:
• Step 1 – Temporal Feature Extraction From Load Pa-

rameters: In this step, the temporal load parameter data(
ξt−1
dξ

, ξt−2
dξ

, · · · , ξt−kξdξ

)
is observed by an LSTM network

in kξ time steps. At each time step i, the temporal feature
hξ (i) is obtained using recurrent feed-forward formulations
in (27a)–(28b).

• Step 2 – Temporal Feature Extraction From Measurement
Data: This step extracts temporal feature hM (i) at each
time step 1 ≤ i ≤ kM + 1 from the measurement data
M(i) =

{
M1,t−i

dM
,M2,t−i

dM
, · · · ,MN,t−i

dM

}
, using (27a)–

(28b).
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• Step 3 – Temporal Pooling: By using (25) and (26), the
average of hξ (i), 1 ≤ i ≤ kξ, and hM (i′), 1 ≤ i′ ≤ kM+1,
is computed.

• Step 4 – Regression: ξ̂
t

dξ
= g

(
utξ, u

t
M

)
is computed as a

linear regression model.
As the first two steps are being executed simultaneously

(see Fig. 4), in order to find the time complexity, one needs to
compute the execution time only for the LSTM with the largest
number of time steps. Each time step in the LSTM consists of
several feed-forward calculations formulated in (27a)–(28b).
The total number of LSTM parameters K is computed using
the O notation:
K = 4× nc × nc + 4× nc × ni + nc × no + 3× nc

= O
(
n2
c + nc (ni + no)

) (31)

where nc is the number of memory cells, ni is the number
of input variables, and no is the number of output features.
As ni and no are small constants, asymptotic complexity is
further formulated as K = O

(
n2
c + nc

)
= O

(
n2
c

)
. Thus,

the first two steps would take T (1) = O
(
Cn2

c

)
with C =

max (kξ, kM ), as both LSTMs are run in parallel (see Fig. 4).
The third step takes T (2) = O (max (kξ, kM + 1)) = O (1)
as time lags kξ and kM are small constants. The fourth step
is a regression implemented by the multiplication of W by
the temporal latent vector u = [utξ, u

t
M ] to obtain ξ̂

t

dξ
. As

the output, i.e., ξ̂
t

dξ
, is 10-dimensional, and the weight matrix

W ∈ R10×dim(u), one can write the time complexity of the
regression as T (3) = O (10dim (u)) = O (dim (u)) = O (1).
Hence, the asymptotic time complexity of the proposed model
is Ttotal = O (T (1) + T (2) + T (3)) = O

(
n2
c + 1 + 1

)
=

O
(
n2
c

)
. The complexity of the proposed model is a low degree

polynomial of the number of memory cells of the LSTM. This
shows that the running time of the proposed model is as low
as a simple feed-forward neural network with nc number of
hidden units at each hidden layer. As a result, the proposed
methodology can be efficiently used for the time-varying load
modeling problem.

Fig. 15 shows the average computational time of the pro-
posed M-LSTM model on the samples of the validation data
for various hyper-parameters 1 ≤ kξ ≤ 8 and 1 ≤ kM +1 ≤ 8
in the 23- and 68-bus system. As shown in Fig. 15, the running
time increases with the growth in time lags. The maximum
running time of the 23-bus system is 1.034 ms while the 68-
bus system has 1.409 ms maximum running time for each
validation sample.

V. CONCLUSION

This paper develops a deep learning based time-varying
parameter identification model considering system-wide mea-
surements, including active power, reactive power, and voltage.
A multi-modal long short-term memory (M-LSTM) method is
developed to estimate the time-varying parameters. An LSTM
network using flexible number of temporal states is defined
over the load parameters and measurements time series in
order to capture deep features with high abstractions. The
proposed multi-modal model is able to be tuned in an end-to-
end fashion using differentiable computational components.

(a) 23-bus system

(b) 68-bus system
Fig. 15. M-LSTM running time (in seconds) for various time lags in two test
cases.

The linear regression is employed to output the estimation
of time-varying parameters at the current time. Compared
with the benchmark methods, the effectiveness and robustness
of the developed M-LSTM method is verified by numerical
simulations on the 23- and 68-bus system. It is shown that
our model outperforms shallow methodologies due to the
provided high-level abstraction, and deep networks due to its
multi-modal structure. Some universal and common lessons
are shown as follows:

(i) The proposed M-LSTM method performs best and shows
the smallest metrics for all parameters compared to
shallow pattern recognition architectures that exist in the
literature.

(ii) In contrast to previous methodologies, by using flexible
number of temporal states, our model is capable of
searching for the optimal lag number when learning tem-
poral features for the parameter estimation task. Optimal
lag values of parameters and measurements are in the
ranges of 2–4 and 1–4 for the 23-bus system, and in the
larger ranges of 3–6 and 5–7 for the 68-bus system.

(iii) Based on estimated time-varying parameters, the mea-
surements obtained by M-LSTM are closer to the real
data with smaller RMSE and MAPE metrics, due to the
high generalization capability and the recurrent structure
of the proposed model, as well as the multi-modal struc-
ture capable of providing a joint representation for the
underlying load parameters and measurements.

In the future work, this study can be extended to incorporate
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with supervised discriminative learning approaches includ-
ing decision trees and support vector machines, in order to
learn nonlinear decision surfaces to differentiate renewable
generation from the time-varying load. While the proposed
approach could be extended to estimate the parameters of
renewable generation units, such effort could be considered
as an extension of the current research effort.
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